Origin of background electron concentration in InxGa1−xN alloys

نویسندگان

  • B. N. Pantha
  • H. Wang
  • N. Khan
  • J. Y. Lin
  • H. X. Jiang
چکیده

The origin of high background electron concentration (n) in InxGa1−xN alloys has been investigated. A shallow donor was identified as having an energy level (ED1) that decreases with x (ED1 = 16 meV at x = 0 and ED1 = 0 eV at x ∼ 0.5) and that crossover the conduction band at x ∼ 0.5. This shallow donor is believed to be the most probable cause of high n in InGaN. This understanding is consistent with the fact that n increases sharply with an increase in x and becomes constant for x > 0.5. A continuous reduction in n was obtained by increasing the V/III ratio during the epilayer growth, suggesting that nitrogen vacancy-related impurities are a potential cause of the shallow donors and high background electron concentration in InGaN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-Principles Investigation of Density of States and Electron Density in Wurtzite In0.5Ga0.5 N Alloys with GGA-PBEsol Method

In present work, we have calculated the electronic properties including density of states and electron density for GaN, InN and InxGa1-xN  in wurtzite phase for x=0.5. The study is based on density functional theory with full potential linearized augmented plane wave method by generalized gradient approximation for calculating electronic properties. In this report we concluded that InxGa1-xN ba...

متن کامل

و چاه کوانتومی چندتائی InxGa1-xN بررسی مدهای اپتیکی آلیاژ در ناحیه فروسرخ دور In0.5Ga0.5N/GaN

Optical properties of InxGa1-xN alloy and In0.5Ga0.5N/GaN multi quantum wells have been investigated in the region of far infrared. Far-IR reflectivity spectra of In0.5Ga0.5N/GaN multi quantum wells on GaAs substrate have been obtained by oblique incidence p- and s-polarization light using effective medium approximation. The spectra and the dielectric functions response give a good informa...

متن کامل

Field-induced non-equilibrium electron transport in an In0.4Ga0.6N epilayer grown on GaN studied by subpicosecond Raman spectroscopy

Field-induced electron transport in an InxGa1−xN (x ∼= 0.4) sample grown on GaN has been studied by subpicosecond Raman spectroscopy. Non-equilibrium electron distribution and electron drift velocity due to the presence of piezoelectric and spontaneous fields in the InxGa1−xN layer have been directly measured. The experimental results are compared with ensemble Monte Carlo calculations and reas...

متن کامل

Microstructural Characterization of High Indium-Composition InXGa1−XN Epilayers Grown on c-Plane Sapphire Substrates

The growth of high-quality indium ~In!-rich InXGa1 XN alloys is technologically important for applications to attain highly efficient green light-emitting diodes and solar cells. However, phase separation and composition modulation in In-rich InXGa1 XN alloys are inevitable phenomena that degrade the crystal quality of In-rich InXGa1 XN layers. Composition modulations were observed in the In-ri...

متن کامل

Band Gap of Hexagonal InN and InGaN Alloys

A survey of most recent studies of optical absorption, photoluminescence, photoluminescence excitation, and photomodulated reflectance spectra of single-crystalline hexagonal InN layers is presented. The samples studied were undoped n-type InN with electron concentrations between 6 1018 and 4 1019 cm– 3. It has been found that hexagonal InN is a narrow-gap semiconductor with a band gap of about...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011